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Abstract
Charged surfaces are interesting for their ability to have long-range correlations and their ability
to be dynamically tuned. While the configurations of charged planar surfaces have been
thoroughly mapped and studied, charged cylindrical surfaces show novel features. The surface
patterning of cylindrically confined charges is discussed with emphasis on the role of chiral
configurations. The origins of surface patterns due to competing interactions in charged
monolayers are summarized along with their associated theoretical models. The
electrostatically induced patterns described in this paper are important in many low-dimensional
biological systems such as plasma membrane organization, filamentous virus capsid structure or
microtubule interactions. A simple model effectively predicting some features of chiral patterns
in biological systems is presented. We extend our model from helical lamellar patterns to
elliptical patterns to consider asymmetrical patterns in assemblies of filamentous aggregates.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the middle of the twentieth century, physicists and
biologists have been interested in heterogeneities on the
surface of model membranes with the goal of understanding
the cellular plasma membrane [1–7]. Langmuir–Blodgett
films provided the initial clue that a monolayer comprised
of a two-component lipid mixture showed gas–liquid order
transitions [8]. With the advance of fluorescence microscopy,
individual domains were visualized and the coexistence
of solid, liquid and gas phases of a lipid could be
visualized in real time [9–11, 3]. Interestingly, complex
shaped finite size domains of size L in addition to
undulating phases with lamellar and hexagonal ordering were
observed [1, 9, 12–15, 2, 16, 17, 5]. The observed finite
size domains in these systems have been shown to be due to
competing interactions, especially short-range steric chemical
mismatches and long-range dipolar interactions [18, 19]. In
two dimensions long-range order is thought to be destroyed
for domains interacting through a potential ∼1/rm that decays
faster than two or more generally when m > d for d
dimensions [20–23, 18]. However, long-range ordering of

such domains or patterns (i.e. correlation length ξ � L) has
been observed on interfaces such as charged membranes and
surfaces [24, 25, 11, 26–28]. To be clear, in systems far below
the critical temperature T � Tc long-range order is observed
independent of dimensionality (as seen in the Ising model
with short-range interactions) [29, 30], but in two dimensions
long-range interactions like electrostatics can lead to domain
ordering due to domain repulsion even near Tc [26]. Actually,
even crystalline order (not domain ordering) has not been
excluded in two dimensions for systems that interact with an
electrostatic potential ∼1/r [21].

Finite size domains are not unique to systems with
competing long- and short-range interactions. Purely repulsive
interactions such as ion correlations in polyelectrolytes,
soft-core potentials and metastable or glassy systems
have all shown the propensity to form domains on
surfaces [31–37, 15, 38–40]. Ferromagnetic layers offer
another possibility to see patterning [41], as well as
supramolecular assemblies with multilayers having polar
order [42]. Further, surface domains have been observed
to not only segregate ordered and disordered molecular
conformations, but also discriminate between isomeric states
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such as D- and S-chiral enantiomers [43–49]. In the latter
case, the line tension of the domains is asymmetric due to the
interactions of the chiral molecules [48].

Electrostatic interactions have been shown to amplify
the asymmetry in the line tension leading to interesting
clover, chiral bananas and spiral shapes [43, 9, 50, 51].
Chiral discrimination has also been observed in quasi-one-
dimensional systems with chiral promoter molecules such as
the ‘sergeants and soldiers’ technique and ‘majority rules’
phenomena [52, 53]. Helical patterning of cylindrical
aggregates is an example that has been studied lately
due to the many biological aggregates that support helical
shapes [54–58, 53, 59–65]. This paper will discuss how
heterogeneously charged surfaces in quasi-one-dimensional
systems could be an explanation for the ubiquitous helical
symmetry seen in biomolecular assemblies. We first
give an introduction to order–disorder transitions in planar
assemblies, especially paying attention to charged monolayers
and bilayers. We then introduce a model for describing charge
patterns on the surface of cylindrical assemblies. In the final
section we relate the model to predicting properties of helical
assemblies of biological molecules.

1.1. Surface patterning of planar systems

Andelman et al [1] were the first to consider periodic
patterns on the surface of a two-component lipid monolayer.
Amphiphilic molecules like lipids have a polar head and carry
a dipole moment. At an air/water interface the electrostatic
interaction between dipoles have long-range interactions and
can lead to the possibility of periodic domains [1, 12, 66–68].
Hexagonal domains generally appear when the solid phase
component is less dense, while a lamellar phase occurs
when the two components are equal in concentration (see
figure 1) [12].

A mean-field approach was used by considering a system
of liquid lipids floating in a gas state near the critical
temperature [1]. Using Ginzburg–Landau theory to expand
the Hamiltonian they were able to construct a phase diagram
of a weakly segregated system using a single dominant
wavenumber (single-mode analysis) [1]. We will now discuss
the two-phase coexistence region for cationic and anionic
lipids coexisting with a gas phase in the strong segregation
limit. Namely, our interest lies with charged patterns at the
low temperature limit where strongly segregated phases occur.

McConnell and others show a similar model as previously,
but only consider the strongly segregated case (i.e. T �
Tc) [12]. They find hexagonal arranged domains at more
rarefied packings, while a lamellar phase exists at denser
lipid packings with a phase coexistence area surrounding the
lamellar phase [12]. Several experiments with chromophores
attached to the lipid allowed for visual conformation of
the phases [9, 69, 4, 70]. Subsequent, x-ray scattering
experiments [71, 72] and numerous theoretical treatments [17]
(mainly based on Landau theory) have found a much richer
phase diagram, especially with orientational ordering. This
leads many to believe that simple one-dimensional dipolar
interactions may be freezing out further order [17, 2]. Pure

Figure 1. Periodic, undulating patterns found in planar systems with
competing interactions. The size of the pattern depends on how
strong the electrostatic interaction is compared to the steric mismatch
of the ordered and disordered components.

Coulomb interactions provide another pathway to investigate
long-range order with competing interactions.

The dipolar free energy for the striped phase proposed
by Andelman et al [1] includes a non-specific interaction
that accounts for the propensity to be in one phase over the
other. A second set of terms takes into account whether the
system prefers to be in the striped phase or isotropic phase [1].
Finally, the small effect (presumably at low temperatures) of
a diffuse boundary between the phases is considered as a
spatially dependent line tension [1, 51]. At equilibrium the
lamellar phase minimizes the free energy at concentrations
near stoichiometric ratios 1:1 gas phase and liquid phase
lipids [1, 12].

Recently, Solis et al [73, 2] have written a phenomenologi-
cal free energy describing a similar system in which
co-assembled positive and negative charged molecules are
confined to a two-dimensional surface. In this system they
assume one component of the assembled surface forms a
strongly segregated domain due to chemical (van der Waals)
affinity between the molecules of like charge accountable by
the line tension [74]. The system is assumed to have not have
correlated ions bound to the surface, so dipolar interactions are
not considered here [73]. Examples of such a system can be
seen in weakly charged lipid bilayers [3, 75], but also ionic
surfactants adsorbed onto mica, silica and graphite [76–78] or
gold [79]. Weakly charged polyelectrolytes with a hydrophobic
backbone adsorbed onto oppositely charged surfaces also show
periodic patterning again due to the long-range nature of the
electrostatic repulsion [80–83]. The model of Solis et al [73]
begins with writing the free energy density (per area) � of a
periodic Wigner cell at low temperature, where the ordered
structure has a charge that is smeared out by the disordered
phase, namely

� = γ

L
s1 + σ L

ε
s2. (1)

The parameter γ represents the line tension between the
phases, with σ and ε representing the surface charge density
and dielectric permittivity, respectively [73]. The parameters
s1 and s2 describe the relationship between the Wigner cell and
the periodic lattice. Specifically, s1 represents the interfacial
length of the ordered domain inside the Wigner cell and s2

is the interaction of the domains on a lattice via the screened
electrostatic interaction via a Yukawa potential. After writing
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a dimensionless free energy �0 = s1
d + s2d the minimization of

the free energy depends only on the parameters s1 and s2 and
the dimensionless length L/L0, with the characteristic length
L0 =

√
γ ε

σ
[73]. The calculation of s1 for lamellar domains

is simply the number of interfaces in the Wigner cell, namely
2 (scaled by the cell size L) [84]. For the circular domains
s1 is the circumference again scaled by L. The calculation of
s2 requires a sum over the entire periodic surface as each cell
interacts through the screened electrostatic potential with the
expression

s2 = 1
2

∑

Λ

∫

cell
dx

∫

cell
dyσ(x)σ (y)V (y − x + Λ), (2)

and Λ representing the lattice vector. The potential
V (x) = e−κx

|x| is simply the standard Debye–Hückel screened
electrostatic potential. After minimizing the free energy they
find hexagonal domains below an area fraction f ∼= 0.34 (and
its corresponding point f ∼= 0.66) with lamellar domains at
intermediate values similar to those seen in figure 1, where f is
the fraction of the ordered domain species over the total Wigner
cell size [73, 84]. For this model the energy is symmetric
at the point f = 0.5, since there is no preference for either
component. The phase diagram of the hexagonal and lamellar
domains is visualized in figure 2. Lamellar charged patterns
are seen at intermediate values 0.34 < f < 0.66.

The characterization of the interfaces between the gas
and solid phases are considered by looking at the coexistence
of ordered lamellar/hexagonal domains with a disordered gas
phase. The free energy of the gas phase is comprised of
a Flory–Huggins free energy density (per unit area) �G in
equation (3) [1, 85, 86] while the solid phase electrostatic
repulsion term �S is

�G

kT
= 1

N
� log � +

(
1

a0
− �

)
log

(
1

a0
− �

)

+ χ�(1 − �a0) (3)

�S = − 1

4π

∫
φ(r)g(|r − r′|)φ(r′) d2r d2r′

g(r) ∝
(

1

ε (ε + ε0)

)
1

rα
,

(4)

with � being the total concentration of the monolayer, N is
the number of charges in the gas phase and a0 is the area per
head group. In equation (4) the solid phase concentration is
φ, while ε and ε0 are the permittivity in the dielectric and
free space, respectively. The decay of the repulsive power law
potential g(r) in the solid phase can be α = 1 for Coulomb
and α = 3 for dipolar and the enthalpic immiscibility is
χ > 0. It is clear that the partition function does not account
for any order due to the molecular details of the components as
(1) the Flory–Huggins description does not account for those
structural details and (2) the population N does discriminate
between gas phase direction in the plane of the interface and
perpendicular to the interface in the ordered phase. The free
energies for the isotropic, hexagonal and striped phases are all
expanded around the critical point and minimized under the
constraint �i −μ�0, where i represents one of the three phases
and μ is the Lagrange multiplier (in this case the chemical
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Figure 2. Phase diagram of a planar two-component charged system
with hexagonal and striped (lamellar) domains possible. The free
energy � (shown in equations (1)) is plotted versus the area fraction
f of one of the charge components. The diagram is cut at its
symmetric point in the area fraction. The transition occurs at
f = 0.34. Adapted with permission from [73]. Copyright 2005 by
the American Institute of Physics.

potential) �0 is the reduced concentration. An example for
a dipolar field (instead of electrostatic) can be seen in a phase
diagram (not reproduced here) that has five phases in contact
at the critical point: a hexagonal, a lamellar and an inverted
hexagonal phase along with a liquid and gaseous phase [1].
This highlights the result that electrostatic interactions (as well
as dipolar) are able to stabilize periodic patterns on a two-
dimensional monolayer. We note that in three dimensions
electrostatics do stabilize finite-sized domains, while dipolar
interactions do not.

Finally, we end the discussion on planar systems
with recent work done by Loverde et al [86, 87]. The
coexistence of two possible phases at low temperature was
considered. One phase consists of a dense, patterned solid
formed by the oppositely charged components. Its free
energy can be computed by assuming the formation of
regions of constant particle and charge density similar to
equation (1) [73, 86]. The second phase is homogeneous
gaseous state and has a low density of charged particles. It was
treated as a two-dimensional charged gas in a homogeneous
background that displays non-selective interactions with the
charged components and its free energy is fG (equation (3)).
The free energy of the low density homogeneous gas of
charged particles can be calculated using linear response
theory by means of the one-loop approximation or random
phase approximation (RPA) at the interface [88]. Using
the ESPResSO simulation package to perform NV T
simulations [89, 86], the interface of the positive and negative
domains in the two-phase coexistence was investigated.

For asymmetric charge ratios of charge valency, figure 3(a)
shows the formation of a hexagonally patterned ‘island’ at
densities ρ = 0.10 [86]. For higher densities, as in
figure 3(b), the solid phase occupies a larger fraction of the
space but exhibits a more clearly ordered structure. For
symmetric charge ratios, the ordering is lamellar [86]. At
higher values (figure 3(d)), the interfaces are much sharper and
exhibit smaller interfacial fluctuations [86]. The orientation
of the lamellar may be due to the minimization of the local
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Figure 3. Coexistence of solid and gas phases in a two-dimensional monolayer of positively (red) and negatively (blue) charged spheres.
When rich in positive charges near a ratio of 3:1, hexagonal domains form (a) and (b), while for symmetric charge ratios 1:1 lamellar domains
form (c)–(f). Closer to the order to disorder transition a clear coexistence is observed. Reproduced with permission from [86]. Copyright 2007
by the American Physical Society.

electrostatic energy. Figures 3(e) and (f) show the transition
from a solid to a solid–gas coexistence phase for symmetric
charge ratios but for weaker electrostatic interactions [86].
At low values of the cohesive energy ε, the system shows
the lamellar patterning but possesses large voids between the
charged domains, effectively reducing the line tension between
domains. The strong segregation theory in equation (1) gives a
characteristic length that scales with the ratio of short-range
interactions over long-range interactions with an exponent
of η = 1/2 in two dimensions and η = 1/3 in three
dimensions [73]. Good agreement is found from simulations
(in two dimensions) with a scaling of η ∼= 0.47 [86, 40].
Better agreement could be found if the strong segregation
theory included the reduction in line tension due to the defects
forming along the lamellar. A good treatment of fluctuations in
order/disorder transitions can be seen in the work of Levin and
Dawson [90], as well as Olvera de la Cruz [91]. It is possible
that density fluctuations can renormalize the line tension and
lead to complex phase diagrams [92, 93]. From a technological
point of view, domains with charge segregation have been
shown to be critical in polymer matrix photovoltaic sheets [94].
To reiterate, dipolar and higher multipolar interactions [95, 96]
do not have long-range ordering ability in three dimensions
while electrostatic do show finite domains [97], which can
be seen in the decay of the three-dimensional static structure
factor ∼1/k2 [21].

1.2. Ionic patterning of cylindrical assemblies

From a theoretical vantage point, the electrostatic patterning of
a system of charges on low-dimensional surfaces (1 < d < 2)
such as cylindrical surfaces is relatively unexplored. Certainly,
the effects of long-range electrostatic forces have been widely
studied for planar two-dimensional systems as outlined above;
also the behaviour of short-range interactions over cylindrical
geometries has been addressed, such as the Ising model with

surface curvature like the cylinder [98]. Similar to the above
we are interested here in summarizing work done on surface
charge patterning on cylinders. Interestingly, charge patterning
on cylindrical surfaces includes many structures in biology,
especially in the extracellular membrane (see the next section).
However, there is also recent work that proposes surface
structure is due not to the long-range nature of electrostatic
interactions, but due to mulitpolar interactions causing
anisotropic interactions through direction-specific packing,
especially with regard to helical patterning [95]. In this
work they use a Monte Carlo simulation to competitively self-
assemble a system of particles with van der Waals interactions
against dipolar, quadrupolar and hexapolar interactions in a
bulk fluid state. Using a seeding mechanism to influence the
energy surface they find complex structures such as chains,
loops, nanotubes and membranes [95, 99].

They conclude with the observation that symmetric ionic
fluids prefer to form square quadrupoles, while asymmetric
ones prefer dipoles and linear quadrupoles and therefore form
chains while the former tend to make sheets and tubes [95].
Further, hexapoles were shown to favour icosahedral formation
similar to viral capsid shells [95], a separate work that has been
of interest to us [100].

A case is analysed here where charges are confined
over a cylindrical surface and interact via electrostatic
interactions [64]. Further, it is examined whether spherically
symmetric electrostatic interactions are capable of breaking
the chiral isometry of the cylinder. Recently, there has been
interest in the study of crystalline systems over constrained
geometries such as the surface of spheres, cylinders and
tori [101–104].

The generalization to more general curved substrates
shows an interesting rich behaviour [61, 76]. A model
is generalized from Solis et al [73] for charge domains
on cylindrical cationic–anionic co-assemblies. A 1:1
stoichiometric mixture that covers the surface completely
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Figure 4. Lamellar patterns tiled on unwrapped cylinder. The
definition of the periodic cell (outlined box) with characteristic cell
size L is shown. The pitch angle � of the striped domains is shown
with respect to the axis of the cylinder. Redrawn with permission
from [64]. Copyright 2007 by the American Physical Society.

is considered. Lamellar domains have been predicted and
observed under similar conditions [73, 12, 1] and we begin
by focusing on striped patterns. Similar to [73, 1] an
incompatibility χ between unlike charges results in a line
tension γ that forms between the domains rich in one
component. Molecules of like charge form homogeneous
domains of average charge density σ . This model assumes the
system is far from Tc and well within the strongly segregated
limit and the corresponding lowest energy configuration is
domains arranged on a periodic lattice {�}.

The free energy density F over a cell is considered with
a cell area Ac being the area of the Wigner–Seitz cell [18].
The system is described by a two-term phenomenological
free energy similar to equation (1), where F = F1 + F2

with F1 the short-range line tension term and F2 the long-
range electrostatic term. We take F0 to be the dimensionless
free energy similar to �0 by scaling by the characteristic
length L0 =

√
γ ε

σ
and measuring the free energy in terms

of dimensionless units. In this case, F1 = 2/L where L is
the distance between two neighbouring lamellae. F2 can be
computed first by ‘unwrapping’ the surface of the cylinder of
radius R onto an infinite set of parallel stripes of size 2π R
on the plane and then by summing all the pairwise screened
electrostatic interactions V (x) over the planar periodic lattice
of the lamellae. To simplify the calculations we adopted a
square lattice oriented along the lamellae shown in figure 4.
Formally:

F2 = 1
2

∑

Λ

∫

cell
dξ

∫

cell
dησ(ξ)σ (Λ + η)

× V (Λ + η − ξ), (5)

where

V (p) = e−κ D

4π D
θ(2π R − |px |), (6)

with D ≡
√

4R2 sin2 px

2R + p2
z being the projected distance

of p = (px, pz) on the {x, z} plane and θ(x) is the step
function. By introducing the reciprocal lattice Q, defined by
Q · � = 2πm, and by using the Poisson summation formula
we have [64]

F2 = 1

2Ac

∑

Q

σ̂ (Q)σ̂ (−Q)V̂ (Q), (7)

Figure 5. Phase diagram of striped patterns confined on a cylindrical
fibre in the space of cylinder size R and electrostatic interaction
distance κ . Three phases are observed that have a finite cell size
along with a macroscopically segregated phase. Redrawn with
permission from [64]. Copyright 2007 by the American Physical
Society.

where σ̂ (Q) and V̂ (Q) are the Fourier transforms of σ and V ,
respectively. They are

σ̂ (Q) = 4
sin(q̄x/4)

q̄x
δ(q̄z), (8)

V̂ (Q) = RIqx R(ξ)Kqx R(ξ), (9)

where ξ = R
√

κ2 + q2
z , and Iv and Kv are modified

Bessel functions of order of the first kind and second kind,
respectively [64]. For simplicity we used the twofold notation
Q = (qx, qz) in the reference system parallel to the lamellar
domains and Q = (q̄x, q̄z) in the reference system parallel
to the axis of the cylinder (see figure 4) [64]. Let � be
the pitch angle between the axis of the cylinder z and the
direction of the lamellar stripes. Any lattice on the surface
of a cylinder must be commensurate with its circumference
or it must be periodic in the x direction with period 2π R.
The commensurability constraint in the reciprocal space is
q̄x = 2πm/L or equivalently qx = 2πm cos �/L and qz =
2πm sin �/L. Moreover qx R = mn must hold, where n is
the number of lamellar stripes per pitch [64]. The free energy
density F is numerically minimized with respect to all possible
lamellar lattices, i.e. with respect to the spacing L and the pitch
angle � for several values of R and κ .

The results are contained in a phase diagram in the space
of κ and R in figure 5. The phase diagram shows three
periodic phases and a macroscopically segregated phase. Phase
I is located at R � L where the circumference is smaller
than the domain size. This is a degenerate phase where
qx = 0 and the rings stack up the length of the cylinder.
Phase II is the helical phase that surprisingly assumes chiral
symmetry. The electrostatic interactions are presumed to be
the reason the phase prefers to adopt chiral symmetry, due to
increasing κ leads to a continuous transition to a non-helical
phase III vertical lamellar domain. Further, the asymptotic
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expansion of the free energy shows asymmetry in the second-
order term and minimization with respect to � at κ = 0 gives

�∗ = arccos
√

3
5 . This value is within numerical precision of

what the helical pitch � is found to be in phase II at κ = 0.
This angle is found to be preserved over a wide range of radii.

Interestingly, the helical phase is stabilized only in the
case of the ∼1/r potentials as, when dipolar interactions
∼1/r 3 are considered, only vertically striped periodic patterns
are stabilized. Higher-order multipolar terms show the same
behaviour. This shows that the interplay of the Coulomb
potential with the striped phase on the cylinder uniquely gives
rise to chiral symmetry [64]. Further, the investigation of other
types of patterns such as circular domains reveals a preference
for achiral configurations on the cylinder. Similarly, an fcc
ionic lattice wrapped around a cylinder showed a similar trend,
although a tethered ionic lattice has led to interesting trapped
states [105]. Finally, upon elongation of circular charged
domains into highly asymmetrical elliptical domains with
eccentricities less than ∼0.75, the lowest energy configuration
returns back to helical wrappings showing that, as the circular
pattern transforms into a lamellar-like pattern, chiral symmetry
is preferred (see subsequent section) [105].

2. Self-assembled biological fibres

We have discussed in section 1 that a significant thrust of
the past 25 years has been in the area of understanding the
composition and ordering of the plasma membrane [6, 3, 4].
The much debated surface patterning of cell membranes
or ‘lipid rafts’ has shown promise in model vesicles, but
has no clear evidence in cellular membranes [106]. A
less well-studied, but related area, is membrane interacting
filaments such as filamentous viruses and microfilaments
surrounding the cell membrane [59, 107–110]. Additionally,
filamentous viruses have a helical capsid that surrounds the
genome [109, 107]. In this section, a brief summary is
given of the recent work that describes lamellar patterns
on assembled biological fibres, especially those with helical
arrangements [111]. The subsequent section will show a
comparison of an electrostatic model prediction’s with that of
some recent structural experiments such as NMR and x-ray
diffraction.

Helical assemblies are ubiquitous in biological systems
and have rightly been studied in part due to the fact that a
helix has a sense of direction over many length scales—in other
words it has the ability to break chiral symmetry [112–114].
Assemblies comprised of chiral components have been well
categorized and efforts have been mostly focused on shifting a
normally racemic mixture to one that is stereochemically pure
or optically active [52]. Self-assembled systems from achiral
components into chiral assemblies have had recent attention
especially in the area of colloids [57, 115, 116, 63, 117].
In these systems the handedness of chirality cannot yet be
controlled without explicitly breaking the symmetry [116].
The intermolecular forces responsible for giving rise to helical
arrangements are still open to debate [63, 64]. In the area of
colloid self-assembly, chiral arrangements have been predicted
by Pickett et al in one-dimensional confinement of spheres

z

x

2

L

2

L–

Figure 6. Schematic of elliptical domain in a periodic cell size L .
The positively charged domain is in the interior of the ellipse (red)
while the negatively charged domain surrounds (blue). At high
asymmetries the phase diagram of the elliptical domain behaves
similar to that of the lamellar domain (shown), while ellipses similar
to a circular domain remain isotropic.

arising exclusively from excluded volume constraints [63].
Since then a variety of systems from magnetically active
ferrofluid capped silica colloids [57] to gold nanowires [118]
have shown the ability to have chiral states. A closer look at
the magnetically assembled colloids reveals the formation of
the dimer that leads to chiral chains [57]. This mechanism
may provide a pathway for the self-assembly of filamentous
chiral aggregates similar to tubulin, which form nanotubes in
the presence of GTP with helical surface arrangements and are
also dimers [119, 120].

The model presented here describes a 1:1 stoichiometric
mixture of oppositely charged domains that fully cover the
surface of a cylinder, as described above [64]. Once again
the lowest energy configuration is taken to be stripes of
alternate positive and negative lamellar domains. In order
to get a closer look at the electrostatic contributions to the
phase diagram of lamellas on a cylinder and to describe fixed
molecular arrangements discussed above [59, 110] the stripe
distance L is assumed to be a fixed length. A simple order-of-
magnitude analysis of the strength of electrostatic interactions
in aqueous solution indicates that the typical stripe width L
is at the nanometre scale. Additionally, if the radius R of
the cylinder is fixed, then the only degree of freedom is the
pitch angle � between the lamellar domains and the cylinder
axis. In this case the energy function does not need to be
minimized with respect to L, since L is assumed to be a fixed
quantity (see figure 6). Essentially, in equation (1) the line
tension is neglected and therefore the electrostatic interaction
in equation (2) is minimized with respect to the pitch angle �.
The minimization of equation (2) is not shown (see [111] for
details), but the focus below is on the predictive capabilities
of the model for some of the helical systems described above.
The dimensionless radius R̃ = R/L is used in the following
calculations for convenience.
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The first example is a system composed of Lanreotide
octapeptides self-assembled into nanotubes [59]. Then the
nanotube structure is a bilayer of amphiphilic β-sheet stacked
molecules that shows viral capsid-like dimensions. The
Lanreotide molecules have an effective charge of +2 and have
a radius R = 12.2 nm and lamellar spacing L = 2.07 ×
sin 119◦ = 1.81 nm, in aqueous solution with acetate salt.
Those values, plus the fact that the bilayer has a thickness of
d = 1.8 nm, correspond to a dimensionless cylinder radius
R̃ = 6.24. The minimization of equation (2) at such a value
of R̃ falls in the region n = 30 [111]. This value of n
corresponds to the number of units of Lanreotides per pitch,
i.e. the number of helices in a single turn, and the resulting
predicted value of the pitch angle is � = 40.1◦ [111]. These
values are not far from the x-ray diffraction measurements of
subunits of Lanreotide per pitch n = 26 and a pitch angle of
� = 48.5◦ [59].

From the x-ray measurements the authors propose a unit
cell that is a stretched square lattice with lattice vectors {i =
207 nm, j = 208 nm} with i perpendicular to the bond axis
and j along the hydrogen bond [59]. We now extend the
lamellar model [111] to include the subtleties of the above
monoclinic lattice by computing a free energy for charged
elliptical domains tiled around a fibre.

Asymmetric domain formation is seen in many systems
with hydrogen bonding or sterically stacked molecules that
align along a preferential direction (i.e. along the axis of the
fibre, shown in figure 7) [121, 122]. We consider an elliptical
domain tiled periodically over the surface of the cylinder. We
write the charge density σ of the domain as

σ(px, pz) =
⎧
⎨

⎩
+σ̄ for 1 � p2

x
l2
x

+ p2
z

l2
z

−σ̄ for 1 <
p2

x
l2
x

+ p2
z

l2
z

,
(10)

where σ̄ is the charged density inside the elliptic domain and
the stoichiometric ratio of charges is 1:1, in other words, we
fix f = 1/2 such that we stay within the lamellar phase
shown in figure 2. We again transform the density into
the reciprocal lattice to make the calculation tractable by the
Fourier decomposition method. The Fourier transform of σ is
defined as

σ̂ (q) =
∫ L

2

−L
2

dx
∫ L

2

−L
2

dz σ(p)eip·q, (11)

with σ̂ representing the Fourier transform of the density. The
integral can be solved analytically over the domain of the cell
as

σ̂ (qx, qz) = 4πlx lzσ̄√
q2

x l2
x + q2

z l2
z

J1

(√
q2

x l2
x + q2

z l2
z

)

− 4σ̄
sin

(
qx L

2

)

qx

sin
(

qz L
2

)

qz
. (12)

To keep the cell electroneutral, the area of the positive
charge density must be equal to the area of the negative charge
density or L2/2 = πlx lz . We also constrain lx, lz � L

2 such
that the major axis of the ellipse is never larger than the cell
size L.

Figure 7. Charged lamellar stripes on a periodic plane of unwrapped
cylinders with circumference 2π R. The separation of the helices is
given by L , with the pitch of a helix given by P. The helices make a
pitch angle � with respect to the axial direction of the cylinder.
Redrawn with permission from [111]. Copyright 2009 by RSC
Publishing.

We calculate the free energy of the elliptical cell using
the Poisson summation method described by equation (7) in
section 1.2. Instead of summing over the one-dimensional
lattice {Λ} used in the previous lamellar case, we consider a
square lattice Λ = ma + nb of elliptical domains where (m, n)
are the lattice indices and a, b are the lattice vectors. A square
lattice is considered here because we are interested in the
highly asymmetrical limit where the square lattice of elliptical
domains is approaching the lamellar lattice. We calculate the
free energy density F for the lattice and look for the minimum
in the pitch angle �. In order to determine whether chiral
lattices are favoured over achiral lattices we compare fibres
with equal radii that have degenerate chiral and achiral lattices
associated with them. Using the ratio r = lx/ lz as a measure
of the eccentricity we find that circular domains prefer achiral
lattices � = 0 or � = π/4. For highly asymmetric ellipses,
where lx = 1/π and lz = 1/2 we find chiral domains for
r � 0.71.

The above parameters from the octapeptide nanotube are
now used in the elliptical model and we find better agreement
with the diffraction data in describing the chiral surface
structure. Using the lattice indices m = 13, n = 26 given
by the x-ray data we find a pitch angle of 45◦ (the achiral
degenerate lattice is the lowest energy state, hence � = 45◦)
and this value is remarkably similar to the 48.5◦ reported
earlier [59].

A second experimental system considered is the capsid
structure of the filamentous bacteriophage (Inovirus) in the
F f group ( f d, f 1 and M13) [107–109]. This capsid surface
for this group of phages has been studied extensively with
solid-state NMR [123, 109] and x-ray diffraction [124, 108].
In part because the capsid surface of the phage has been
well characterized, it has been quite useful for understanding
molecular chirality, especially in cholesteric liquid crystal
systems [107, 112, 125, 126]. The f d virion presents a helical
arrangement with a fivefold symmetry around the fibre axis, a
radius of the virion R = 2.68 nm, a pitch distance for one helix
P = 3.3 nm and a pitch angle � = 49◦ for the similar M13

7
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virus. The M13 virion differs from the f d by the substitution
of a aspartic acid (D), which is negatively charged at biological
pH, with a polar asparagine (N) at the N-terminus of the 50-
residue coat protein [108]. The relation between the repeat
distance of n helices or pitch and the lamellar periodicity L can
be easily solved by using a bit of trigonometry from figure 7.
The relation is

L = 2π RP

n
√

P2 + (2π R)2
, (13)

with n accounting for the number of helices wrapping around
the fibre in one turn or per pitch P . From equation (13) we
compute L = 2.36 nm. We note that there have been studies
that consider deviations in the helices with respect to the axis
of the cylinder, which equation (13) does not include [127].
The model for R̃ = 1.135 predicts the correct number of
helices per pitch n = 5 with the corresponding pitch angle
� = 45.6◦. We find also agreement with 10% accuracy for the
chiral structure of the strain P f 1 of the Inovirus phage, which
has a different helical arrangement compared to the f d and
M13 virions [109].

Another system considered is single-stranded DNA
wrapped around carbon nanotubes. In aqueous solution it is
shown to form helices with a pitch P = 14 nm [128]. Since
the ssDNA backbone is 0.5 nm above the surface of the 0.8 nm
diameter carbon nanotube, it is argued that the radius of the
cylinder is R = 0.9 nm. From this we estimate L = 5.24 nm
and the model correctly predicts a single wrapping helix (n =
1) with an axial angle of � = 22◦. Similarly, an example
of two polysaccharide chains twining around a single-walled
carbon nanotube with 1.5 nm diameter and an helical pitch
P = 10 nm is reported [129]. For such a case, the radius R̃ =
0.35 for which equation (2) has a minimum at n = 2, which is
correct for the two chains winding around the nanotube. There
are numerous other systems that display helical patterns that
have not been considered with this model [130–135].

3. Conclusions

The ubiquitous nature of helical structures in low-dimensional
systems observed in Nature is fascinating alone, yet the idea
of chirality being Nature’s sense of direction is even more
intriguing. Although chirality is seen in many different energy
landscapes from weak interacting particles in particle physics
to the formation of our own hands, there has been no clear
evidence of what the fundamental reasons are at the molecular
level that gives rise to helical structures. Cylindrical surfaces
offer the opportunity to study electrostatic interactions in the
unique environment where one direction is very constrained
due to the curvature, while the other is topologically flat
extending out to large distances. With just a simple one-
component plasma confined to a cylindrical surface the
long-range nature of the electrostatic energy is able to go
beyond breaking translational and rotational isometries, but
also chiral (albeit with equal probability) isometry. Further
investigations needs to be done to assess the universality of
chiral arrangements coming out of electrostatic interactions.

We emphasize that many systems besides block copoly-
mer melts are described with correlations that decay as 1/r .
These systems, including irradiated alloys [136, 137] and
spatio-temporal patterns [136, 137], in the presence of compet-
ing interactions, generate patterns like those described in this
paper. Spatio-temporal patterns with propagating fronts visu-
alized in Taylor–Couette experiments and Rayleigh–Bérnard
patterns in convection cells have long been studied [138]. In
fact, block copolymer melts have shown pattern formation of
a similar nature to those found in propagating fronts [137].
We expect these systems will develop similar chiral patterns
to those discussed in this paper when confined to the surface of
cylinders as others have seen with triblock copolymer assem-
blies that have displayed helical patterns [139, 56]. Further, we
hope the chirality exhibited by the patterns formed on cylindri-
cal surfaces in reaction–diffusion systems, such as those found
in thermoreversible immiscible chains [140, 141], will be ex-
plored in the future.
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